28 VALPROIC ACID CONFIRMATION BY GCMS	Page 1 of 3	
Division of Forensic Science	Amendment Designator:	
TOXICOLOGY TECHNICAL PROCEDURES MANUAL	Effective Date: 31-March-2004	

28 VALPROIC ACID CONFIRMATION BY GCMS

28.1 Summary

28.1.1 Biological samples are slightly acidified with monosodium phosphate buffer (pH 5.5) and extracted with chloroform. An aliquot is injected into a GCMS for confirmation.

28.2 Specimen Requirements

28.2.1 1 mL biological fluid or comparable amount of tissue dilutions/homogenates

28.3 Reagents and Standards

- 28.3.1 Phensuximide
- 28.3.2 Valproic acid
- 28.3.3 Monosodium phosphate (NaH₂PO₄)
- 28.3.4 Chloroform
- 28.3.5 Methanol

28.4 Solutions, Internal Standard, Calibrators and Controls

- 28.4.1 1 M monosodium phosphate (pH 5.5): Weigh 13 g monosodium phosphate (Na H_2PO_4) and transfer to a 100 mL volumetric flask. QS to volume with dH_2O .
- 28.4.2 20 mg/mL valproic acid stock solution. Weigh 200 mg valproic acid and transfer to 10 mL volumetric flask. QS to volume with methanol.
- 28.4.3 0.2 mg/mL phensuximide internal standard solution. Weigh 10 mg phensuximide and transfer to 50 mL volumetric flask. QS to volume with methanol.
- 28.4.4 Controls
 - 28.4.4.1 Negative control. Blood bank blood (or comparable) determined not to contain valproic acid or phensuximide.
 - 28.4.4.2 Positive control. In house control containing valproic acid spiked at concentration similar to case specimens.

28.5 Apparatus

- 28.5.1 Agilent GC/MSD, Chemstation software
- 28.5.2 Test tubes, 16 x 114 mm (10 mL) glass centrifuge, conical bottom
- 28.5.3 Centrifuge capable of 2000 3000 rpm
- 28.5.4 Vortex mixer
- 28.5.5 GC autosampler vials and inserts

28 VALPROIC ACID CONFIRMATION BY GCMS Page 2 of 3 Division of Forensic Science Amendment Designator: TOXICOLOGY TECHNICAL PROCEDURES MANUAL Effective Date: 31-March-2004

28.5.6 GC/MSD parameters. Conditions may be changed to permit improved performance.

28.5.6.1 Acquisition Mode: Scan (50 - 550 amu)

28.5.6.2 Column: HP 5MS 25 m x 0.25 mm x 0.25 μ m

28.5.6.3 Detector Temperature: 280° C

28.5.6.4 Oven Program

Equilibration time: 0.50 minutes
Initial temp: 110° C
Initial time: 1 minutes
Ramp: 10° C/min
Final Temp: 280° C
Final Time: 12 minutes
Run Time: 28 minutes

28.5.6.4.1 Inlet

Mode: Splitless
 Temperature: 260° C
 Injection volume: 1.0 μL

• Purge Time: ON at 1.0 minute

28.6 Procedure

- 28.6.1 Label clean 16 x 114 mm screw cap tubes accordingly, negative and positive control and case sample IDs.
- 28.6.2 Prepare negative and positive controls.
- 28.6.3 Pipet 1 mL of each case sample into appropriately labeled tubes.
- 28.6.4 Add 150 µL of 0.2 mg/mL phensuximide internal standard to each tube.
- 28.6.5 Add 1 mL sodium monophosphate buffer (pH 5.5) to each tube.
- 28.6.6 Add 1 mL chloroform to each tube.
- 28.6.7 Vortex briefly.
- 28.6.8 Centrifuge at approximately 2500 rpm for 15 minutes. Break protein plug and transfer bottom organic layer to appropriately labeled GC vials.
- 28.6.9 Inject 1 µl of each sample onto GCMS.

28.7 Calculation

28.7.1 Quantitative valproic acid results are determined by FPIA.

28.8 Quality Control and Reporting

28.8.1 See Toxicology Quality Guidelines

	28	VALPROIC ACID CONFIRMATION BY GCMS	Page 3 of 3		
	Division of Forensic Science			Amendment Designator:	
•	TOX	COLOGY TECHNICAL PROCEDURES MANUAL		31-March-2004	
28.0	Refere	neas			
20.9					
	28.9.1	I. Sunshine. Methodology for Analytical Toxicology. CRC Press, 1982.			
Ī					